Q.P. Code: 16C8507		
Re	. No:	
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR	
	(AUTONOMOUS)	
	B. Tech II Year I Semester Supplementary Examinations August-2021	
	MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE	
Tim	(Common to CSE & CSIT)	
IIm	3 hours Max. Marl	ks: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)	
1	UNIT-I Show that (. D	
1	a Show that $(\neg P \land \neg Q \land R) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$ b Define Quantifiers and types of Quantifiers with superplay	6M
	 b Define Quantifiers and types of Quantifiers with examples. OR 	6M
2	a Show that S is a valid conclusion from the premises $p \rightarrow q$, $p \rightarrow r$, $\neg(q \land r)$ and	6M
	(S \vee p).	UIVI
	b Obtain PCNF of A= $(p \land q) \lor (\sim p \land q) \lor (q \land r)$ by constructing PDNF.	6M
	UNIT-II	UIVI
3	a Let $f: A \to B$, $g: B \to C$, $h: C \to D$ then prove that $ho(go f) = (hog)o f$.	6M
	b If $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 2x+1$, and $g: \mathbb{R} \to \mathbb{R}$ such that $g(x) = x/3$ then verify	6M
	$that(gof)^{-1} = f^{-1}og^{-1}$.	UII
	OR	
4	a Show that every homomorphic image of an abelian group is abelian.	6M
	b Define and give examples for group, semigroup, subgroup &abelian group.	6M
	UNIT-III	
5	a How many numbers can be formed using the digits 1, 3, 4, 5, 6, 8 and 9 if no	6M
	repetitions are allowed?	
	b . What is the co-efficient of (i) $x^3 y^7$ in $(x + y)^{10}$	6M
	(ii) x^2y^4 in $(x - 2y)^6$	
	OR	
6	a Find the minimum number of students in a class to be sure that 4 out of them are	4M
	born in the same month.	
	b How many ways can the letters of the word COMPUTER be arranged? How many	8M
	of them begin with C and end with R? How many of them do not begin with C but	
	end with R?	
	UNIT-IV	
7	a Solve the recurrence relation $a_r = a_{r-1} + a_{r-2}$ using generating function.	6M
	b Solve the recurrence relation using generating functions $a_n - 9a_{n-1} + 20a_{n-2} = 0$ for	6M
	$n \ge 2$ and $a_0 = -3$, $a_1 = -10$	
-	OR	
8	a Find the generating function for the sequence $1,1,1,3,1,1,\ldots$	3M
	b i)Find the coefficient of x^{20} in $(x^2 + x^3 + x^4 + x^5 + x^6)^5$?	9M
	ii)Determine the sequence generated by the following:	
	$f(x) = 2e^{x} + 3x^{2}$ and $7e^{8x} - 4e^{3x}$.	

Q.P. Code: 16CS507

UNIT-V

9 a Show that the two graphs shown below are isomorphic?

b Explain about the Rooted tree with an example?

6M

6M

R16

OR

- 10 a Define Spanning tree and explain the algorithm for Depth First Search (DFS) 8M traversal of a graph with suitable example.
 - **b** A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3. **4M** Find the number of vertices in G?

*** END ***